to: Index and Menu

Calculate Binomial probabilities

Expected: 10

Observed: 14

Sample Size: 20



Proportion positive: 0.5

Variance Exp= 5;
   sd= 2.23607

BINOMIAL PROBABILITIES
single; cumulative

p(=0): 1.0E-6; p(>0): 0.999999
p(=1): 1.9E-5; p(>1): 0.99998
p(=2): 0.000181; p(>2): 0.999799
p(=3): 0.001087; p(>3): 0.998712
p(=4): 0.004621; p(>4): 0.994091
p(=5): 0.014786; p(>5): 0.979305
p(=6): 0.036964; p(>6): 0.942341
p(=7): 0.073929; p(>7): 0.868412
p(=8): 0.120134; p(>8): 0.748278
p(=9): 0.160179; p(>9): 0.588099
p(=10): 0.176197; p(>10): 0.411901
p(=11): 0.160179; p(>11): 0.251722
p(=12): 0.120134; p(>12): 0.131588
p(=13): 0.073929; p(>13): 0.057659
p(=14): 0.036964; p(>14): 0.020695

(a=-1,b=21,0)

*** summary ***

Point probability= 0.036964
p(Obs>=14): 0.0577; (<14): 0.9423
p(Obs>14): 0.0207; (<=14): 0.9793
Mid-p: 0.039; 1-p: 0.961; 2*p: 0.078

Two sided probabilities
(sum of small p's):

abs(Exp-Obs)=abs(10-14)=4
Pointpr(Exp-Obs=4): 0.036964
p(Exp-Obs>=4)= 0.11532
p(Exp-Obs>4)= 0.07836
Mid-p= 0.09684
For help go to SISA.

More:

Calculate CI
around obs= 14

T-test the difference
Exp-Obs=10-14=4.

Calculate the minimum
Sample Size
required to see if
the difference=4 is
statistically significant

Study the probability of N=
given exp=10 and obs=14