to: Index and Menu

Simple Interactive Statistical Analysis

Go to procedure

Diagnostic Effectiveness


Fill the two by two table with integer values. A proportional prevalence value can be given optionally. or

Give a proportional sensitivity value in the ++ box and a proportional specificity value in the -- box. A proportional prevalence value can be given optionally. On top of that, if you want, you can give a population or sample size.


If you think there isn't a lot you can do with a 2*2 table, think again. The analysis of the diagnostic effectiveness of a test is quite complicated and in a two by two table you can study all the intricacies which play a role in the development and application of diagnostic instruments. The analysis presents the situation of a test with two possible results, negative or positive, diseased or healthy, fail or pass, against the objective measurement of the outcome, also measured dichotomously. Outcome measurement might for example be that we wait a while for the disease to develop or not to develop, use the result of a highly valid laboratory procedure, confirmative surgery, or if the pupil indeed follows the predicted career, to take an example outside medicine. The input for the procedure is simple, in a two by two table you classify the number of times a test did a correct positive prediction that the individual is affected by the problem, a correct negative prediction, an incorrect positive prediction, an incorrect negative predictions.

Following, the various indicators that are presented in the output of this SISA procedure are discussed. In the discussion attention is given to various considerations in diagnostic test development theory. Lastly, most output is presented with estimates of the variance and standard errors. Often the continuity corrected Wilson (which is equivalent to Fleiss's quadratic confidence interval) and sometimes Wald's Confidence Intervals are also presented; it should be considered that for the data that is used in test development these are to be preferred above the ones directly based on the standard errors. If one would want to use another confidence interval please note the percentage and the number of cases on which this percentage is based and use the one mean procedure.

Summarizing all of the above it seems that sensitivity and specificity and the two predictive accuracies are probably the most valuable of the indicators. Sensitivity and specificity give a good view of the quality of the test relatively independent of circumstances. The predictive accuracies give a view of what happens in different practical situations in terms of numbers and proportions tested with correct and incorrect results. Predictive accuracies also give the post test probability of having the disease, an essential piece of information to communicate to the patient together with his or her test result.

Further Reading.

Grimes DA, Schulz KF. Uses and abuses of screening tests. Lancet 2002;359(9309):881-884. ->Medline

Knottnerus JA, Weel C, Muris JW. Evaluation of diagnostic procedures. Br Med J 2002;324:477-480. ->BMJ

Irwig LM, Bossuyt PM, Glasziou PP, Gatsonis CA, Lijmer JG. Designing studies to ensure that estimates of test accuracy are transferable. Br Med J 2002;324:669-671. ->BMJ

Steurer J, Fischer JE, Bachmann LM, Koller M, ter Riet G. Communicating accuracy of tests to general practitioners: a controlled study. Br Med J 2002;324:824-826. ->BMJ

Bossuyt PM, Reitsma JB, Bruns DE, Gatsonis CA, Glasziou PP, Irwig LM, Lijmer JG, Moher D, Rennie D, de Vet HC. Towards complete and accurate reporting of studies of diagnostic accuracy: the STARD initiative. Br Med J 2003;326:41-44. ->BMJ

TOP of page

Go to procedure

to: Index and Menu

All software and text copyright by SISA