![]() |
T-test |
Options consider: Effect Sizes |
Mean 1: 13.98 |
Mean 2: 9.087 |
N1: 25 |
N2: 25 |
Std Dev.1: 10.4796 |
Std Dev.2: 6.31 |
|
t (0.025) for 95% CI= 2.0491 mean2 eq: 9.087 (var2= 39.816) (se= 1.262) Probability that var1<var2 p=0.00797 (left: 0.992; double: 0.016) Difference between means: M1-M2=13.98-9.087=4.893 sd=13.445; se=2.4465 95% CI of difference: -0.1203 <4.893< 9.9063 (Wald) t-difference: 2 df-t: 29.7; p= 0.9723 (left p: 0.0277; two sided: 0.0554) Difference not significant at 5% Cohen's D: 0.5657; s.e: 0.2884 This seems a medium effect size. 95% CI: -0.025 <0.5657< 1.157 - pooled SD= 8.6498 Cohen's/Pearson's R: 0.2722 95% CI: -0.02 <0.2722< 0.521 Glass D: 0.4669; s.e: 0.066 95% CI: 0.312 <0.4669< 0.622 - control/expected SD= 10.4796 Hedges's G: 0.5568; s.e: 0.2883 Eta-sq: 0.0741; s.e: 0.0384 Adjusted R-square: 0.0347; s.e: 0.0173 Omega: 0.0566; s.e: 0.0283 Epsilon: 0.0548; s.e: 0.0274 |
For help go to SISA |
More: Calculate the minimum Sample Size required to see if the difference between 13.98 and 9.09 is statistically significantCalculate CI around Mean1= 13.98.Calculate CI around Mean2= 9.087. |
|