![]() |
T-test |
Options consider: Confidence intervals Effect Sizes |
Mean 1: 8 |
Mean 2: 162 |
N1: 18198 |
N2: 18325 |
|
t (0.025) for 95% CI= 1.9608 BINOMIAL PROPORTIONSmean1 eq: 0.0004 (sd= 0.021) (se= 0) mean2 eq: 0.0088 (sd= 0.094) (se= 0.001) Difference between means: M1-M2=0.0004-0.0088=-0.0084 sd=0.0962; se=0.0007 95% CI of difference: -0.0098 <-0.0084< -0.007 (Wald) -0.0098 <-0.0084< -0.007 (CCWald) -0.0099 <-0.0084< -0.0071 (N-W) t-difference: -11.853 df-t: 18416.3; p= -0 (left p: 1; two sided: 0) Effect size: Odds Ratio: 0.0493; s.e: 0.0179 This seems a large effect size. 95% CI: 0.024 >0.0493> 0.1 Risk Ratio: 0.0497=p1/p2=0/0.01 95% CI: 0.024 <0.05< 0.101 Efficacy(VE): 95.03% 95% CI: 89.9% <95.03%< 97.6% Phi/Cramer's V/R: 0.0617 95% CI: 0.051 <0.0617< 0.072 Yules-Q: -0.906; s.e.= 0.0325 95% CI: -0.97 <-0.906< -0.842 Yules-Y: -0.6366; s.e.= 0.0539 95% CI: -0.742 <-0.6366< -0.531 |
For help go to SISA |
More: Two by Two table analysis Chi squares, Risk Ratios, Odds Ratios and other table statistics Fisher exact testCalculate the minimum Sample Size required to see if the difference between 8 and 162 is statistically significantCalculate CI around Mean1= 8.Calculate CI around Mean2= 162. |
|